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Abstract—The interaction of an elastic bottom with the liquid exhibiting a free liquid surface has been
investigated for a rectangular container, For this reason the container bottom was considered cither as a
flexible membrane or as a thin elastic rectangular plate. Furthermore the hydroelastic problem of a liquid in
a rigid rectangular tank in which the free liquid surface was covered by a flexible membrane or a thin elastic
plate has also been treated. In both cases the coupled frequencies of the structure-liquid system has been
obtained. It was found that even structural modes couple with odd liquid modes and vice versa and that the
coupled frequencies exhibit decreased magnitude compared with the uncoupled structural frequencies md
increased magnitude compared to the uncoupled fiquid frequencies. They decrease with decreasing tension
of the membrane or decreasing stiffness of the plate.

NOTATION
®(x,y,2,t) velocity potential
@ width of the container
b depth of the container
h liquid height in the container
w(x, 5, t) displacement of membrane or plate
p - density of liquid
To tension in membrane
g gravitational or longitudinal acceleration
§ mass/unit area of membrane
T kinetic energy
V potential encrgy
mass density of the plate
ﬁ thickness of the plate
D stiffness of the plate
P(x,y,t) loadfunction
v Poisson ratio
o4 uncoupled liquid slosh frequencies
o'’ uncoupled membrane frequencies
@me uncoupled plate frequencies
wma  Coupied frequencies

1. INTRODUCTION
Liquid containers of present and future acrospace vehicles are by no means rigid. The motionof a
liquid with a free surface is induced by rigid body or by elastic wall excitation and may have severe
influence upon the stability of the vehicle. The low fundamental frequency of the liquid, which is
usually very close to the control frequency of the vehicle, affects the coupling of control, of liquid
and the elastic walls considerably, since with the increasing size of the vehicles their elastic
frequencies become significantly lower. Thus, the problem of interaction has a pronounced
influence upon the design of such a vehicle and its control system. Many investigators have studied
the sloshing of liquid with a free surface in order to determine the natural frequencies and the
response of the liquid to various excitations. For these studies the containers of various geometries
have been considered to be perfectly rigid, while the liquid could be treated as inviscid and
incompressible. For simple container geometries, such as circular annular cylindrical sector
tanks[1, 2] or rectangular containers[3, 4] the procedure for the solution of the linearized liquid
motion is rather straightforward and yields very useful results for the interaction of liquid motion
and vehicle control. For a more complicated container geometry, such as conical, spherical or
composite construction of cylindrical shells with some kind of hemispherical or elliptical bulkhead,
the determination of the behavior of the liquid with a free surface becomes even in linearized
theory quite difficult and may be treated by approximate numerical methods only. For additional
information on this subject, Abramson{5] may be consulted. In large aerospace vehicles the
propellant containers increase in size and decrease in stiffness and the coupled frequencies of the
liquid-structure-system may be significantly different from those of the uncoupled system. They
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may be even close to the control frequency and may therefore be of distinct danger to the
performance and mission of the aerospace vehicle. The immediate extension of the earlier work on
liquid sloshing in rigid containers is the case including the response of the liquid due to the motion
of the elastic structure[6, 7]. In such a case the treatment is focused on the behavior of the liquid
with a free surface in a container whose walls were forced to oscillate with a prescribed shape and
frequency. The analysis gives, however, no allowance for the interaction of liquid and motion of
the elastic structure and it is justified only as long as the dominant natural frequencies of the liquid
and the structure are well apart from each other, and as long as the generalized masses are not too
large. Further work in this direction has been performed by treating the elastic portion of the
containers as membranes[8-10]. A more general analysis of the complete coupled bending and
sloshing was made by Rabinovich[11] and Miles[12]. In these investigations potential flow was
assumed and a velocity potential could be determined. Miles' analysis of the coupled bending-
sloshing problem involves the use of the Lagrangian procedure. The result of the analysis exhibited
alowering of the resonant bending frequencies due to the sloshing liquid in the container, while the
coupled sloshing frequencies did not appreciably change from their uncoupled values.
Lindholm[13] et al. conducted experiments in which the couple effect on the bending frequency
was measured for thin cylindrical shells. It was found that the theoretical results of Miles give a
fairly adequate prediction of the influence of the liquid motion upon the bending frequency of the
cylindrical container. Breathing vibrations of a partially filled cylindrical container have been
investigated by Chu{14] and Chu and Gonzales[15]. They considered shell modes that display both
circumferential and axial wave patterns for rotationally symmetric containers, for which they
neglected circumferential and longitudinal inertia. It was found that for shell frequencies higher
than those of the first several uncoupled liquid modes the surface effects on the breathing motion of
the shell are of negligible magnitude unless the excitation is in the vicinity of a low sloshing fre-
quency. Further work involving coupled oscillations of liquid and elastic containers is limited and
in some cases inconclusive and not in good agreement with experimental results. Fontenot and
Lianis{16] have investigated a completely filled cylindrical shell by using a perturbation technique,
while Rabinovich{17] treated a partially filled cylindrical shell employing the Mushtari-Donnell-
Vlasov shell equations. The results of a full container compare quite well with the experimental
data[18]. For a container with elastic walls and bottom, Bauer[7] presented a procedure for the
determination of the coupled frequencies for axisymmetric oscillations. For the cylindrical shell he
used Donnell’s shell equations, while in the case of the container bottom a flexible membrane or an
elastic plate is used. Natyshkin and Rakhimov[19] have also performed some investigations of a
partially filled cylindrical container with various end conditions. Systems being partially elastic and
rigid have been treated by various authors. Bhuta and Koval have investigated the interaction
between the liquid surface oscillation in a cylindrical container having a rigid wall and a thin flat
membrane[20] or plate bottom[21].

The coupled frequencies were found to be slightly lower than those for a completely rigid
container. They exhibit only a marked difference for low fillings. More on the hydroelastic
behavior of a system is presented for circular cylindrical containers in[22] and[23] and for
axisymmetric oscillations in an annular cylindrical tank in[24]. Bauer et al.[25] treated the
axisymmetric case of a container with elastic side-walls and rigid bottom. In this paper they
also investigated the coupled motion of a liquid in an infinitely large rectangular container with
clastic sidewalls and rigid bottom and elastic bottom and rigid sidewalls. It was found that with
decreasing ratio of sidewall height to liquid height the fundamental coupled frequency increases
considerably for elastic sidewalls and exhibits quite different values to the uncoupled frequen-
cies. For rigid sidewalls and an elastic container bottom the coupled frequency is always
smaller than that of the liquid in the completely rigid container. The case of a cylindrical tank
with both sidewall and bottom being elastic has been treated in[26), while nonlinear liquid
motion in a longitudinally excited container with an elastic plate bottom was treated by Bauer et
al.[27). Other hydroelastic oscillations in a rigid circular cylindrical container with coverage of
the free liquid surface by a flexible membrane or an elastic plate has been treated by Bauer[28]
for free and forced oscillations of the container. This way could the liquid frequencies through
the coupling with the elastic lid be shifted to much higher values, thus exhibiting the benefit of a
more effective separation from a control frequency.
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For rectangular containers such-hydroelastic investigations: have. not been:performed, inspite
of the fact that they play an important role in aircraft, space craft and ship design. For such a
geometry the analysis is due to the appearing coordinates analytically more involved since the
method of separation fails. The present paper is dealing therefore with the formulation and
solution of the hydroelastic problem of a rectangular container partially filled with a nonviscous
and incompressible liquid. The container shall have rigid sidewalls and an elastic bottom in
form of a flexible membrane or an elastic plate or it shall have a rigid tank-bottom and a liquid
surface being covered by a membrane or a plate. In both cases the coupled frequencies of the
system shall be obtained. This is useful information not only for the design of spacecraft and
aircraft vehicles, but also for building of ships, especially large tankers, as well as for structural
systems that have to be designed to withstand earthquakes.

2. BASIC EQUATIONS

A rectangular container with length a and width b is filled to a height h with a homogeneous,
nonviscous and incompressible liquid. It may have an elastic container-bottom and a free liquid
surface or its liquid surface may be covered by an elastic membrane or plate. If the
displacement of the liquid and the elastic structure is considered small, the interaction of the
structure and liquid may be treated with their linearized equations of motion. Since the flow of the
liquid in the container may be considered irrotational, the velocity of the liquid can then be
represented as the gradient of a velocity potential ®. From the continuity equation div ® =0 we
obtain thus the Laplace equation (Fig. 1)

’e
R A R 2 m

which has to be satisfied in the region
0sx<a O0=sys<bh, -~-h=szs0.

The boundary conditions at the rigid sidewalls are given for the stationary container by

3P _ . _ -h=z<0

a—x—O at the side walls x—O,aand{ 0sysb } 93]
and

P _ . | _ ~hszs0

3y =0 atthesidewalls y=0,b and{ 0 sta}‘ 3

If the container is excited harmonically in x-direction by x(t) =xo¢'™ with the forcing
frequency {) the sidewall boundary condition (2) yields then

adb_ .
2 = %oil e at x=0,a @

i

In case of a rotational excitation 9(t) = 9, ¢™" about an axis through the undisturbed center of
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Fig. 1. Coordinates of the hydroelastic systems.



42 HELMUT F, BAUER
gravity (new coordinate system) the sidewall boundary condition (2) is to be replaced by

% =9ize™ at x== -g-. (5)

If the rotational excitation ¢(t) = @o¢*¥ takes place about an axis through the center of gravity
of the liquid perpendicular to the free liquid surface (i.e. z-axis), then the wall-boundary
conditions read

—=igpe™y at x== (6)

iR

®=iﬂcp e at y=x

By )]

Nl

2.1 Free liquid surface and elastic bottom

If the liquid in the container is free to oscillate the free surface condition is obtained from the
kinematic condition ®, = {,, expressing with { as the free liquid surface displacement the fact,
that the normal velocity of the free surface is equal to the normal velocity of a fluid particle at
the free liquid surface, and the unsteady Bernoulli equation, which yields in linearized form the
expression &, + g{ = 0. The free liquid surface condition is therefore

2
a;b +g-—- 0 at the surface z=0 (or%in the case of rotation 8(t)). 8)

Since the container bottom is considered to be elastic, its motion may be described by a
flexible membrane or an elastic plate. For a flexible clamped membrane the equation of the
motion of the membrane is given by

Pw w_patw_ pad g
?+W To_a—fr T, ot L-r-h Tow ©®)
with the boundary condition
w=0 for x=0,a and y=0,b. (10)

Here w is the displacement of the membrane in z-direction, p its mass per unit area, T, its
tension, while p is the mass density of the liquid. Instead of the membrane equation (9), we
could also use the kinetic and potential energy of the membrane and the loading P(x, y, t) and
derive the equation of motion with the help of the Lagrange equation and the virtual work of
the loading of the membrane, in order to obtain the generalized force on it. The kinetic energy

is given by
T= E]f( )dxdy (11)

The potential energy is

[ [+ ) oo

and the loading of the membrane by the liquid vields

Pey =0 | -ppw (13)
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If the container bottom is described by the motion of an elastic plate, eqn (9) must be
substituted by

2y 30
Dw +pph, o =—pZ2 | - pgw (14)

zm—h

where A = 3%/ax® + 3%/ay? is the Laplacian operator. For a simply supported plate the boundary
conditions of the plate are given by

w=0 at x=0,a and y=0,b (15)
and

Pw  *w
3;7+v =0 at x=0,a (16)

3w, 3w
—a';r+ll =0 at y= Ob (17)

where v is the Poisson ratio and D = Eh;/12(1 - v*) represents the flexural rigidity of the plate.
E is Young's modulus of elasticity, A, is the thickness of the plate and p,h, is the mass density
per unit area of the plate. If one applies the kinetic and potential energy for the derivation of
the equations of motion of the plate one uses

T-zp,,hjf( )dxdy (18)

and

B[ [ (] oS (e s o

The compatibility condition at the elastic bottom is

9P _aw _
IRy at z=-h. (20)

2.2 Coverage of the liquid surface with an elastic member
If the liquid surface is covered by a flexible membrane, one is able to shift the natural

frequency of the coupled liquid-structure system to much higher values. The equation of the
membrane is then

iw 3w _pd'w_pad P8
At S A an
the equation of a covering plate is
- 3w ad
D,A*w + Py =—p7; 2 (22)

The bottom of the container has to satisfy

ad
3z_=0 at z=-h (23)
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if it is considered rigid, while the compatibility condition in this case is given by

9P _aw
rriabrry at z=0 (24)

These equations have to be solved to obtain the response of the hydroelastic system, i.e. the
coupled frequencies of the liquid structure system and its coupled vibrational behavior. One
may recognize that for D, >0(Ty—0), p, >0 —0) eqns (21) and (22) yield the dynamic
condition of the free liquid surface (w—¢), which together with the compatibility condition
(kinematic condition) results in the free liquid surface condition (8).

3. METHOD OF SOLUTION
We shall treat first the coupled liquid oscillations in a container with a free liquid surface and
an elastic bottom.

3.1 Free liquid surface and elastic bottom
To determine the coupled frequencies of a liquid with a free surface and an elastic bottom,
we have to solve simultaneously eqns (1)-(3), (8) together with (9), (10) or (14)~(17) with (20).
We treat first the case of a fiexible membrane as the container bottom. A velocity potential
satisfying the Laplace equation (1) together with the tank sidewall boundary conditions (2) and
(3) as well as the free surface condition (8) is given by

®(x, y,2,1) = z z Apn € {cosh[ ﬁm]

o? tanh[‘"':)l Vnla’+ m’b’] _g% Vn'a®+ m’b?

(0% - 0?)

sinh [g \G’?’WF’]} COS( ; )cos("—:l) 25)

Here the free surface is taken at z = h, while the elastic bottom is at z = 0. The value w) is the
natural frequency of the liquid in a completely rigid container. It is[1)

WX =%% Vnlat+ m!b!tanh(% Vnla+ m’b’). (26)

The Ann are integration constants and w are the coupled frequencies of the system, which
have to be determined. The solution of the membrane satisfying the boundary conditions (10) is
given by

Wi, 3y ) = 2 2 Won(t) sm('"’"‘)sin("—’;’—) @n

where the time functions W,,(t) have to be determined by the membrane equation. The kinetic
energy (11) yields with eqn (27)

T=£% 3 S w2, 28)

8 ] a=1

and the potential energy is given by

Tmr ab i i [ 2] W, 29)

m=1np=]
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With the loading of the membrane by the liquid motion P(x, y, t) we are able to determine the
generalized force Qua With the help of the virtual work

SW=3'S QuaWn = L fP(x,y,t)z S W sm( a") sin("—;’l)dxdy.

m=] n=1 meln=]

Introducing P(x, y, t) (eqn (13)) and eqn (25) yields with (27) with the Lagrange equation the
expression

. _4i et mn[]-—( D41~ (=1)"*1]
Woa + [wﬁﬁ"-iﬂ] Won = ‘,‘Lﬂ; ;o & Ay -0 (30)
kvmlivn

where ©®9 is the natural circular frequency of the membrane. It is
T 2
wn = "“ 0[—:'*“;:] @3n

For this reason the functions cos(kwx/a) and cos(/wy/b) have been expanded into Fourier-sine-
series with the coefficients

2 mfl-(~1 )"'**] kmx @ . (m‘trx)
a0=2 kax _ ® o (MTX
ok cos— mz_ o sin{ =

al=

and

By = 2_,,_[1_[_!(:%1], cosl--z 2 ﬁ“’sm(—gz)
n=]

B’I) = 0
It may be noticed that values for either k =0 or | =0 and all other values except k+m and [ +n

being odd a%’ and B¢ vanish.
The solution of the differential eqn (30)

Wonn = Bpnn € (32)

yields

_ 2 pgl_4i L]0 ol G 0 o Gt e O
B[ 00— 025|205 3 4 M0 )

while the compatibility equation a®/az = aw/ot at z =0 results with eqn (25) and (32) in

S L
- 4Aplf” “ " tanh(whjab) VI'a'+ kb)) mn__
By = ; § o -0’ (m*~k*)n*-1%)
BT Vaatd § BTGl Vay B 34

The equations (33) and (34) represent «* homogeneous algebraic equations, of which the
coefficient determinant yields the frequency equation for the determination of the coupled
frequencies wm,. With the above remarks we notice that to Byym-1,2¢-; Only Az » values appear,
that to Bamzn only Aji-;21-1, t0 By 241 Only Azk-12 and that to B,,,_;2n only As - appear.
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Multiplication with iw of the first equation results in the possibility to eliminate the B,
values. It is therefore:

S 5 ma Ayl = (=141 - (1)) | po? » e
o e e [ -] o

. [w’—wﬁ”/tanh’[w—h\/l’a’+k’bz] } =0 35)

(w(s)‘ )

of which the coefficient determinant represents the frequency equation for the determination of
the coupled frequencies w. Truncating this infinite determinant for given m- and n-values to a
finite number of rows and columns yields the approximate coupled frequencies of the system.
The higher the order of the evaluated determinant, the better shall be the approximation of the
lower frequency results.

In the case the bottom is described by an elastic simply-supported plate, the analysis of the
solution is quite similar to the membrane case. The potential energy (29) has to be substituted
by

V=1—)8£‘abmi 3 [ 2] w2, (36)

=] a=]

which results with u being substituted by p,h in the same set of equation except for the fact
that o™ has to be substituted by w &Y, the uncoupled natural frequencies of the elastic plate.
It is:

4 2 292
(p)2=D ku [m n ]
ol = | . (37

Thus solving the above determinant of eqns (35) with %) instead of w™” yields the coupled
frequencies for the liquid-platebottom-system.

3.2 Coverage of the liquid surface with an elastic member

We distinguish here again two cases, namely the coverage of the free liquid surface with a
flexible membrane and the case, where the surface is covered by an elastic plate. This
procedure will result in an increase of the coupled frequencies of the liquid-structure-system. In
this case we have to solve simultaneously the eqns (1)~(3) together with (21), (23) and (24) or
(22), (23) and (24). If one uses a flexible membrane as a means of covering the free liquid
surface, a velocity potential satisfying the Laplace equation (1) together with the rigid tank wall
boundary conditions (2), (3) and (23) is given by

. = h| =- Vn%a®+m?? (z + h)
®(x,y, 2, t)="‘l'§_:“._1 Cosc([)Sh[ z%n an am+m1 ] ]cos(m:x) cos(n—zz) e“. (38)

Here the rigid bottom of the container is taken at z = —h, while the flexible membrane is located
at z=0. The values A,, are integration constants and w are the coupled frequencies of the
liquid-membrane-system, which have to be determined. The procedure of the solution continues
as in the previous section. With the loading of the membrane by the liquid motion

P(x,y,t)=-ip ; z wuAy cos(k ) cos(‘—z) “ — pgw (39)
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the equation for the amplitude of the membrane yields

i w gz ma[l= (D= (=)™
Wrml + [ M)+e£] mn = __'g ; z [ A (m2 — kz)(nz — lz) . (40)

k#m I#n

The solution of this differential equation is of the form of eqn (32) and results with the
compatibility condition (24) in

_ dipw S mn[l— —1)"""'][1 (-1)"']
B"'"[wz"(':”-wz+%cg-]+;%’2 2 ‘= k%(n*- 1 “h
and
_ 5) _1 k+m ] _1 14+n
0B "2 z 4Auwﬂ mn[1- ( )kz)(]'[' —(I’) )] 42)

These eqns (41) and (42) represent «* homogeneous algebraic equations, of which the
coefficient determinant yields the frequency equation for the coupled frequencies of the
membrane-liquid system. The elimination of the integration constants B,,, yields:

o o miAy[1 = (D™ 0= D" (0l [ a2, 8] _po?)] _
=11=1 (mz_,?z)(ntlz) { 8 [w,,.,. @ +P] N }—0

mn=123,... 43)

of which the coefficient determinant represents the frequency equation for the determination of
the coupled frequencies w. Truncating this infinite determinant for given m- and n-values to a
finite number of rows and columns results in approximate coupled lower frequencies.

In the case of a coverage by an elastic plate, which is considered to be simply-supported, the
analysis for the determination of the coupled frequencies of the plate-liquid-system is quite
similar as in the membrane case and results in the same set of equations except for the fact,
that p has to be substituted by p,h, and w2 has to be replaced by w5

Numerical evaluation. The coupled frequencies have been numerically evaluated for a rec-
tangular container of the side ratio b/a = 0.5 and the parameter pa/u = 1000. The lower coupled
frequencies are presented together with the uncoupled frequencies w?/(g/a) as functions of the
tension variable To/uga in the case of a membrane and as functions of the stiffness parameter
Djpga® in the case of a plate. Two typical liquid heights have been investigated. The first one
exhibits a rather highly filled container of the liquid height ratio h/a = 1.0, while the second case
considers a quite low filling ratio h/a =0.1. Figures 2 exhibit the frequencies of the flexible
membrane-bottom-liquid system with a free liquid surface. The lower coupled and uncoupled
frequencies are presented for those values of m and n which modes interact with each
other. The uncoupled frequencies of liquid and membrane are for Ajla =0.1 (---) and for
hla =1.0 (~——) presented. The coupled membrane and liquid frequencies are exhibited for
hia =0.1 (---) and for h/a = 1.0 as a full line (—). It may be noticed that for a liquid height
ratio h/a = 1.0 coupled liquid frequency slightly shifts in magnitude below the value of the
uncoupled frequencies, while the coupled membrane frequencies exhibit a considerable
decrease in comparison with the uncoupled frequencies of the membrane. The effect of
interaction of the flexible membrane bottom with the liquid surface is, of course, much more
pronounced in the case of a low liquid height, as is shown for h/a = 0.1 in Fig. 2. The coupled
liquid frequencies shift to much higher values and exhibit with decreasing tension an increase
of magnitude, while the coupled membrane frequencies are of much lower magnitude than the
uncoupled membrane frequencies and show with decreasing tension a more rapid decrease in
magnitude. Similar behavior may be observed for a container with a thin elastic plate as its
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Fig. 2. Coupled frequencies of fiexible membrane-bottom-liquid system {—— coupled frequencies, —--
uncoupled frequencies} for liquid height Wa = 1.0; {--- coupled frequencies, ... uncoupled frequencies}
for liquid height hfa =0.1.
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Fig. 3. Coupled frequencies of -elastic plate-bottom-liquid system {~—— coupled frequencies, ---
uncoupled frequencies} for liquid height hja = 1.0; {- -~ coupled frequencies, . . . uncoupled frequencies} for
liquid height h/a =0.1.
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bottom and a free liquid surface. It is shown in Fig. 3. To investigate the influence of varying
liquid height and show the strong interaction of bottom and free liquid surface for the lower
liquid heights, the coupled and uncoupled frequencies have been presented in the Figs 4. In
these figures the uncoupled liquid frequencies presented by the dashed line (---), the un-
coupled frequencies of the membrane by (—--) and those of the plate by the dotted lines (.. .).
The coupled frequencies are shown as dash-dotted (---) lines and full lines (—). The
uncoupled liquid frequencies approach, of course, with decreasing liquid height h the frequency
zero, while uncoupled membrane and plate frequencies are constant values. The coupled liquid
frequencies increase with decreasing liquid height, while the coupled membrane- and plate
frequencies are much reduced and decrease for decreasing low liquid heights. The upper two
full lines represent the coupled membrane frequencies which correspond to the dashed (---)
uncoupled frequencies, while the upper (---) lines are coupled plate frequencies and cor-
respond to the dotted lines (...) for the uncoupled frequencies of the plate.

If a container is completely rigid and its free liquid surface is covered with a flexible
membrane or an elastic plate the usually low free liquid surface frequencies may be shifted by
this method to much higher values. This may be a desirable effect in space vehicles and space
laboratories in order to shift the natural frequencies away from control frequencies, thus getting
rid of a strong interaction of the liquid and control system and a low-value jitter, which definitely is
undesirable for experiments to be performed on a space lab. In Figs. § the effect of a membrane
cover on the liquid surface is exhibited besides the uncoupled frequencies of the free liquid
surface and membrane alone. The liquid height ratios hfa =0.1 (...) and h/a = 1.0 (—--) are
exhibited with the uncoupled membrane frequencies as dotted lines (...), while the coupled
frequencies are presented for hfa = 0.1 as (---) and for h/a = 1.0 as a full (—) line. It may be
mentioned that always two uncoupled frequencies are shown while for the coupled frequencies
the four lowest ones are presented. For h/a = 0.1 the coupled frequencies exhibit lower values
as those for h/a = 1.0 With decreasing membrane tension the coupled frequencies approach
those of the case of the free liquid surface. Similar results are obtained for the covering of the
free liquid surface with a thin elastic plate. They are exhibited in Fig. 6. The strong influence on
the coupling of the system by the liquid height is presented in Figs. 7, where the uncoupled

frequencies of the liquid (---), the plate (...), the membrane (———) and the coupled
frequencies of plate-liquid height ratio h/a.
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Fig. 4. Influence of liquid height upon the coupled liguid frequencies.
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Fig. 7. Influence of liquid-height upon the coupled frequencies of the liquid surface covered system (~~-
liquid uncoupled, .. .. plate uncoupled, --~ membrane uncoupled; -+~~~ coupled liquid-plate system,
—w coupled liquid-membrane system).

Only for low liquid heights there is a further strong decrease in the other-wise already
reduced magnitude of the coupled frequencies compared with the uncoupled ones.

The numerical results have been obtained by limiting the magnitude of the summation indices

k, I, m and n. If for reasons of comparison the maximum of those values was changed from § to

10,

the difference in the results showed in the first and second coupled frequencies in all cases a

change of less than 3%.

L

W b

© ™ N gwme

REFERENCES

H. F. Bauer, Fluid oscillation in the containers of a space vehicle and their influence upon stability. NASA Tech. Rep.
NASA-TR R 187 (1964).

. H. F. Bauer, Liquid sloshing in a cylindrical quarter tank. AJAA J. 1 (11), 2601 (1963).
. H. F. Bauer and J. Villanueva, Theory of liquid sloshing in a rectangular container with numerical examples for C$

Wing. Lockheed-Georgia Company, Rep. No. ER 8390, (1967).
H. F. Bauer, On the destabilizing effect of liquids in various vehicles. Vehicle System Dynamics 1, 227 (1972)
H. N. Abramson (Ed.), The dynamic behavior of liquids in moving containers. NASA-SP-106 (1966).

H. F. Bauer, The theory of liquid sloshing in compartmented cylindrical tanks due to bending excitation. AIAA 1. 1 (7),
1590 (1963).

. H. F. Bauer, Hydroelastische Schwingungen im aufrechten Kreiszylinderbehilter. Zeitschrift fir Flugwissenschaften

18. Jahrgang, Heft 4, pp. 1 (1970).

. C. Hwang, Longitudinal sloshing of a liquid in a flexible hemispherical tank. J. Appl. Mech. Trans. ASME, paper No.

G-APM-14, (1965).
M. L. Gossard, Axisymmetric dynamic response of liquid filled hemispherical thin-walled, elastic tanks. AIAA Symp.
of Structural Dynamics and Aeroelasticity, 30 Aug. to 1 Sept. 1965.

. C. W. Coale and M. Nagano, Axisymmetric modes of an elastic cylindrical-hemispherical tank partially filled with a liquid.

AIAA Symp. of Structural Dynamics and Aeroelasticity, 30 Aug. to 1 Sept. 1965.

. F. L Rabinovich, Concerning the equations of elastic oscillations of thin-walled bars filled with a liquid having a free

surface. Space Technology Lab. Translation STL-T-RV-19 from Akad. Nauk. SSR Izvestiju OTN mekhanika i
machinostrogenic, No. 4 (1959).

. J. W. Miles, On the sloshing of liquid in a fiexible tank. J. Appl. Mech. 25, 277 (1958).
. U. S. Lindholm. W. H. Chu. and H. N. Abramson, Bending vibrations of a circular cylindrical shell with an internal

liquid with a free surface. AIAA J. 1 (9) 2092 (1963).

. W. H. Chu, Breathing vibrations of a partially filled cylindrical tank-linear theory. J. Appl. Mech. 30 (4), $32 (1963).
. W. H. Chu and R. Gonzales, Supplement to breathing vibrations of a partially filled cylindrical tank-finear theory. J.

Appl. Mech. 3 (4) 722 (1964).



652 Hewmut F. Bausr

6.

17.
18.

19.

20.
2.

22.
2.

24,
25.
26.
27
28,

. L. L. Fontenot and G. Lianis, The free vibrations of thin elastic pressurized cylindrical shells filled with a perfect and
incompressible liquid leaving a free surface. Int. Symp. on Space Technology and Science. Tokyo, Japan (1963).

F. 1. Rabinovich, The equations of the transverse vibrations of liquid-filled shells. NASA-TT-F-216 (1964).

U. §. Lindholm, D. D. Kana and H. N. Abramson, Breathing vibrations of a circular cylindrical shell with an internal
liquid. J. Aerospace Sci. 29 (9) 1052 (1962).

V. F. Natyshkin and I. S. Rakhimov, Oscillation of a cylindrical shell partially filled with a liquid. Aviatrionnaia
Tekhnika 17 (3) 75 (JAAA 64-28276) 1964.

P. G. Bhuta, and L. R. Koval, Coupled oscillations of a liquid with a free surface in a tank. ZAMP 15 (1964).

P. G. Bhuta and L. R. Koval, Hydroelastic solution of the sloshing of a liquid in a cylindrical tank. J. Acoust. Sec. Am.
36 (11), 2071 (1964).

H. F. Bauer and J. A. Siekmann, Note on hydroelastic sloshing, ZAMM 49, 577 (1969).

H. F. Bauer and J. Siekmann, Dynamic interaction of a liquid with the elastic structure of a circular cylindrical
container, Ing. Arch. 40, 266 (1971).

H. F. Bauer, J. Siekmann and J. T. S, Wang, Axisymmetric hydroelastic sloshing in an annular cylindrical container.
AIAA J. 5 (8), 981 (1968).

H. F. Bauer, T. M. Hsu and J. T. S. Wang, Interaction of a sloshing liquid with elastic containers. J. Basic Engng.
ASME, 90, Series D, No. 3 373 (1968).

H. F. Bauer, J. T. S. Wang and P. Y. Chen, Axisymmetric hydroelastic sloshing in a circular cylindrical container. The
Aeronautical 1. 76 (744) 704 (1972}

H. F. Bauer, S. S. Chang and J. T. S. Wang, Nonlinear liquid motion in a longitudinally excited container with elastic
bottom. AIAA J. 9(12), 2333 (1971).

H. F. Bauer, Hydroelastische Schwingungen in cinem starren Kreiszylinder bei elastischer Fliissigkeitsoberflichenab-
deckung. Zeitschrift fiir Flugwissenschaften 21, Heft 6, pp. 202 (1973).



