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AIlIInd-The intcrac:tion of an elastic: bottom with the liquid exbibitina a free liquid surfac:e has been
investiptccl for a rectaD&uIar container. For this reason the container bottom wu considerccl either as a
flexible membrane or u a thin e1utic: rec:taquIar plate. Purtbcrmore the bydroelaatic: problcm of a liquid in
a riaid ree:taDp1ar tank in which the free liquid surfac:e wu coverccl by a flexible membrane or a thin elaatic:
plate has also been treatccl. In both c:ases the coupIccI frequeac:ies of the struetIIre-liquid system has been
obtained. It wu found that even strue:tural modes couple with odd liquid modes and vic:e versa and that the
coup1ccl frequencies exhibit dccreasccI mapitude c:omparccI with the uncoupIecI strue:tural frequeDCics and
iDc:reuccI mapitudc compared to the uncoup1ccIliquid frequencies. They clec:rease with dec:rcasina tension
of the membrane or dcc:reasin& stiffness of the plate.
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velocity potential
width of the container
depth of the container
liquid beiaht in the container
displac:ement of membrane or plate
density of liquid
tension in membrane
eravitational or.loqitudinal ac:c:eleration
mass/unit area of membrane
kinetic: CJICfIY
potential CJlCrlY
mass density of the plate
thic:kness of the plate
ltilacss of the plate
ioadfunc:tion
Poisson ratio
uncoup1ccI liquid slosh frequeac:ies
uncoupled membrane frequencies
uncoupled plate frequencies
couplccl frcquenc:ies

I. INTRODUCTION
Liquid containers of present and future aerospace vehicles are by no means rigid. The motion of a
liquid with afree surface is induced by rigid body orby elastic wall excitation and may have severe
intluence upon the stability of the vehicle. The low fundamental frequency of the liquid, which is
usually very close to the control frequency of the vehicle, affects the coupling of control, of Hquid
and the elastic walls considerably I since with the increasing size of the vehicles their elastic
frequencies become significantly lower. Thus, the problem of interaction has a pronounced
intluence upon the designof such avehicle and its control system. Many investigators have studied
the sloshing of liquid with a free surface in order to determine the natural frequencies and the
response of the liquid to various excitations. For these studies thecontainers of variousgeometries
have been considered to be perfectly rigid, while the liquid could be treated as inviscid and
incompressible. For simple container geometries, such as circular annular cylindrical sector
tanks[1,2] or rectangular containers [3, 4] the procedure for the solution of the linearized liquid
motion is rather straightforward and yields very useful results for the interaction of liquid motion
and vehicle control. For a more complicated container geometry, such as conical, spherical or
composite constructionofcylindrical shells with some kind ofhemisphericalorellipticalbulkhead,
the determination of the behavior of the liquid with a free surface becomes even in linearized
theory quite difficult and may be treated by approximate numerical methods only. For additional
information on this subject, Abramson[S] may be consulted. In large aerospace vehicles the
propellant containers increase in size and decrease in stiffness and the coupled frequencies of the
liquid-structure-system may be significantly different from those of the uncoupled system. They
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may be even close to the control frequency and may therefore be of distinct danger to the
performance and mission of the aerospace vehicle. The immediate extension of the earlier work on
liquid sloshing in rigid containers is the case including the response of the liquid due to the motion
of the elastic structure [6, 7]. In such a case the treatment is focused on the behavior of the liquid
with a free surface in acontainer whose walls were forced to oscillate with a prescribed shape and
frequency. The analysis gives, however, no allowance for the interaction of liquid and motion of
the elastic structure and it is justified only as long as the dominant natural frequencies of the liquid
and the structure are well apart from each other, and as long as the generalized masses are not too
large. Further work in this direction has been performed by treating the elastic portion of the
containers as membranes [8-10]. A more general analysis of the complete coupled bending and
sloshing was made by Rabinovich [11] and Miles [12]. In these investigations potential flow was
assumed and Ii velocity potential could be determined. Miles' analysis of the coupled bending­
sloshing problem involves the use of the Lagrangian procedure. The result of the analysis exhibited
alowering of the resonant bending frequencies due to the sloshing liquid in the container, while the
coupled sloshing frequencies did not appreciably change from their uncoupled values.
Lindholm[l3] et al. conducted experiments in which the couple effect on the bending frequency
was measured for thin cylindrical shells. It was found that the theoretical results of Miles give a
fairly adequate prediction of the influence of the liquid motion upon the bending frequency of the
cylindrical container. Breathing vibrations of a partially filled cylindrical container have been
investigated by Chu [14] and Chu and Gonzales [15]. They considered shell modes that display both
circumferential and axial wave patterns for rotationally symmetric containers, for which they
neglected circumferential and longitudinal inertia. It was found that for shell frequencies higher
than those of the first several uncoupled liquid modes the surface effects on the breathing motion of
the shell are of negligible magnitude unless the excitation is in the vicinity of a low sloshing fre­
quency. Further work involving coupled oscillations of liquid and elastic containers is limited and
in some cases inconclusive and not in good agreement with experimental results. Fontenot and
Lianis [16] have investigated acompletely filled cylindrical shell by using a perturbation technique,
while Rabinovich [17] treated a partially filled cylindrical shell employing the Mushtari-Donnell­
Vlasov shell equations. The results of a full container compare quite well with the experimental
data[l8]. For a container with elastic walls and bottom, Bauer [7] presented a procedure for the
determination of the coupled frequencies for axisymmetric oscillations. For the cylindrical shell he
used Donnell's shell equations, while in the case of the container bottom aflexible membrane or an
elastic plate is used. Natyshkin and Rakhimov[l9] have also performed some investigations of a
partially filled cylindrical container with various end conditions. Systems being partially elastic and
rigid have been treated by various authors. Bhuta and Koval have investigated the interaction
between the liquid surface oscillation in a cylindrical container having a rigid wall and a thin flat
membrane[20] or plate bottom [21].

The coupled frequencies were found to be slightly lower than those for a completely rigid
container. They exhibit only a marked difference for low fillings. More on the hydroelastic
behavior of a system is presented for circular cylindrical containers in[22] and[23] and for
axisymmetric oscillations in an annular cylindrical tank in[24]. Bauer et al. [25] treated the
axisymmetric case of a container with elastic side-walls and rigid bottom. In this paper they
also investigated the coupled motion of a liquid in an infinitely large rectangular container with
elastic sidewalls and rigid bottom and elastic bottom and rigid sidewalls. It was found that with
decreasing ratio of sidewall height to liquid height the fundamental coupled frequency increases
considerably for elastic sidewalls and exhibits quite different values to the uncoupled frequen­
cies. For rigid sidewalls and an elastic container bottom the coupled frequency is always
smaller than that of the liquid in the completely rigid container. The case of a cylindrical tank
with both sidewall and bottom being elastic has been treated in[ 26], while nonlinear liquid
motion in a longitudinally excited container with an elastic plate bottom was treated by Bauer et
aI. [27]. Other hydroelastic oscillations in a rigid circular cylindrical container with coverage of
the free liquid surface by a flexible membrane or an elastic plate has been treated by Bauer [28]
for free and forced oscillations of the container. This way could the liquid frequencies through
the coupling with the elastic lid be shifted to much higher values, thus exhibiting the benefit of a
more effective separation from a control frequency.



Hydroelastic vibrations in a rectangular container 641

For rectangUlar containers suc")ldroelastic, in\lOStiaatjQDSiballe.lWtbeea';performed, inspite
of the fact that they play an important role in aircraft, space craft and ship design. For such a
geometry the analysis is due to the appearing coordinates analytically more involved since the
method of separation fails. The present paper is dealing therefore with the formulation and
solution of thehydroelastic problem of a rectangular container partially filled with a nonviscous
and incompressible liquid. The container shall have rigid sidewalls and an elastic bottom in
form of a flexible membrane or an elastic plate or it shall have a rigid tank-bottom and a liquid
surface being covered by a membrane or a plate. In both cases the coupled frequencies of the
system shall be obtained. This is useful information not only for the design of spacecraft and
aircraft vehicles, but also for building of ships, especially large tankers, as well as for structural
systems that have to be designed to withstand earthquakes.

2. BASIC EQUATIONS

Arectangular container with length a and width b is filled to a height h with a homogeneous,
nonviscous and incompressible liquid. It may have an elastic container-bottom and a free liquid
surface or its liquid surface may be covered by an elastic membrane or plate. If the
displacement of the liquid and the elastic structure is considered small, the interaction of the
structure and liquid may be treated with their linearized equations of motion. Since the flow of the
liquid in the container may be considered irrotational, the velocity of the liquid can then be
represented as the aradient of avelocity potential 4>. From the continuity equation div 4> =0 we
obtain thus the Laplace equation (Fig. I)

(1)

which has to be satisfied in the region

Osxs~ OSys~ -hszsQ

The boundary conditions at the rigid sidewalls are given for the stationary container by

and

a4> =0 at the side wallsax {
-hSZSO}

x =0, a and 0S Ys b (2)

a4> {-h S Z SO}ay =0 atthe side walls y =0, b and 0s xsa' (3)

If the container is excited harmonically in x-direction by .l(t} = .loelO
, with the forcing

frequency 0 the sidewall boundary condition (2) yields then

~: =.loiOelO
' at x =O,a. (4)

In case of a rotational excitation "(t) ="oem, about an axis through the undisturbed center of

z
f,.. liquid lU,face

•
....tlc bottom

z
....tlc _.,

Fig. 1. Coordinates of the bydroelastic systems.
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gravity (new coordinate system) the sidewall boundary condition (2) is to be replaced by

(5)

If the rotational excitation cp(t) =CPo ein
' takes place about an axis through the center of gravity

of the liquid perpendicular to the free liquid surface (i.e. z-axis), then the wall-boundary
conditions read

a<P =iOcp elO'y at a (6)ax 0 x=±2'

a<P 'n b (7)-= iOcp e' 'x at y=+-ay 0 - 2'

2.1 Free liquid surface and elastic bottom
If the liquid in the container is free to oscillate the free surface condition is obtained from the

kinematic condition <Pt = 'If expressing with' as the free liquid surface displacement the fact,
that the normal velocity of the free surface is equal to the normal velocity of a fluid particle at
the free liquid surface, and the unsteady Bernoulli equation, which yields in linearized form the
expression <P, +g' =O. The free liquid surface condition is therefore

(8)

Since the container bottom is considered to be elastic, its motion may be described by a
flexible membrane or an elastic plate. For a flexible clamped membrane the equation of the
motion of the membrane is given by

with the boundary condition

w = 0 for x = 0, a and y = 0, b.

(9)

(10)

Here w is the displacement of the membrane in z-direction, 1£ its mass per unit area, To its
tension, while p is the mass density of the liquid. Instead of the membrane equation (9), we
could also use the kinetic and potential energy of the membrane and the loading P(x, y, t) and
derive the equation of motion with the help of the Lagrange equation and the virtual work of
the loading of the membrane, in order to obtain the generalized force on it The kinetic energy
is given by

l:!:. (/I (" (8W)2
T =2 Jo Jo 8t dx dy.

The potential energy is

and the loading of the membrane by the liquid yields

a<P IP(x, y, t) = -P-at - pgw.
z·-It

(11)

(12)

(13)
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If the container bottom is described by the motion of an elastic plate, eqn (9) must be
substituted by

(14)

where b. =a2/ax2+a2/ay2 is the Laplacian operator. For a simply supported plate the boundary
conditions of the plate are given by

and

w=0 at x =0, a and y =0, b (1S)

(16)

(17)

where v is the Poisson ratio and D =Bh:J12(1- v~ represents the flexural rigidity of the plate.
E is Young's modulus of elasticity, h, is the thickness of the plate and p,h, is the mass density
per unit area of the plate. If one applies the kinetic and potential energy for the derivation of
the equations of motion of the plate one uses

(18)

and

The compatibility condition at the elastic bottom is

a4» awaz=-at at z = -h.

(19)

(20)

2.2 Coverage of the liquid surface with an elastic member
If the liquid surface is covered by a flexible membrane, one is able to shift the natural

frequency of the coupled liquid-structure system to much higher values. The equation of the
membrane is then

(21)

the equation of a covering plate is

The bottom of the container has to satisfy

a4» = 0 at z = - haz

(22)

(23)
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if it is considered rigid, while the compatibility condition in this case is given by

a<l> aWaz =at at z =O. (24)

These equations have to be solved to obtain the response of the hydroelastic system, i.e. the
coupled frequencies of the liquid structure system and its coupled vibrational behavior. One
may recognize that for Dp -+0(10 -+0), Pp -+0(,... -+0) eqns (21) and (22) yield the dynamic
condition of the free liquid surface (w -+ (), which together with the compatIbility condition
(kinematic condition) results in the free liquid surface condition (8).

3. METHOD OF SOLUTION
We shall treat first the coupled liquid oscillations in a container with a free liquid surface and

an elastic bottom.

3.1 Free liquid surface and elastic bottom
To determine the coupled frequencies of a liquid with a free surface and an elastic bottom,

we have to solve simultaneously eqns (1H3), (8) together with (9), (10) or (14Hl7) with (20).
We treat first the case of a flexible membrane as the container bottom. A velocity potential

satisfying the Laplace equation (1) together with the tank sidewall boundary conditions (2) and
(3) as well as the free surface condition (8) is given by

(

W
2 tanh[~ v'nzaz+mZbZ]-~v'nzaz+ mZbZ)

(w~:) - w2)

Here the free surface is taken at z = h, while the elastic bottom is at z = O. The value w~~ is the
natural frequency of the liquid in a completely rigid container. It is[l]

(26)

The Amm are integration constants and ware the coupled frequencies of the system, which
have to be determined. The solution of the membrane satisfying the boundary conditions (10) is
given by

III III (m1TX) (!!.!l)w(x, Y, t) =I I Wm"(t) sin - sin b
.-1"-1 a

(27)

where the time functions Wm"(t) have to be determined by the membrane equation. The kinetic
energy (11) yields with eqn (27)

(28)

and the pot~ntial energy is given by

(29)
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With the loading of the membrane by the liquid motion P(x. y, t) we are able to determine the
generalized force Q",n with the help of the virtual work

Introducing P(x, y, t) (eqn (13» and eqn (25) yields with (27) with the Lagrange equation the
expression

where td~) is the natural circular frequency of the membrane. It is

(31)

For this reason the functions COs(k1Tx/a) and cos(l1Ty/b) have been expanded into Fourier-sine­
series with the coefficients

k1rx ~ (t). (m1TX)cos-= ~ a", sm--a ",_I a

and

It may be noticed that values for either k =0 or I =0 and all other values except k+m and 1+ n
being odd a~) and 13~) vanish.

The solution of the dift'erential eqn (30)

(32)

yields

while the compatibility equation a4>/az = awlat at z =0 results with eqn (25) and (32) in

(34)

The equations (33) and (34) represent ex} homogeneous algebraic equations, of which the
coefficient determinant yields the frequency equation for the determination of the coupled
frequencies tdftIJI. With the above remarks we notice that to B2m-1.2n-1 only A2l,21 values appear,
that to B2"'2n only A 2t-12H, to B2m 2n-1 only A2t-121 and that to B2m-12n only A 2t 21-1 appear.
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Multiplication with iw of the first equation results in the possibility to eliminate the BIM

values. It is therefore:

(35)

of which the coefficient determinant represents the frequency equation for the determination of
the coupled frequencies w. Truncating this infinite determinant for given m- and n-values to a
finite number of rows and columns yields the approximate coupled frequencies of the system.
The higher the order of the evaluated determinant, the better shall be the approximation of the
lower frequency results.

In the case the bottom is described by an elastic simply-supported plate, the analysis of the
solution is quite similar to the membrane case. The potential energy (29) has to be substituted
by

(36)

which results with JL. being substituted by p"hp in the same set of equation except for the fact
that w~)Z has to be substituted by w~!, the uncoupled natural frequencies of the elastic plate.
It is:

D 4[2 2]2(P)Z=~ m +n
WIIIII h -:T P .PP p a

(37)

Thus solving the above determinant of eqns (35) with w~! instead of w~j2 yields the coupled
frequencies for the liquid-platebottom-system.

3.2 Coverage of the liquid surface with an elastic member
We distinguish here again two cases, namely the coverage of the free liquid surface with a

flexible membrane and the case, where the surface is covered by an elastic plate. This
procedure will result in an increase of the coupled frequencies of the liquid-structure-system. In
this case we have to solve simultaneously the eqns (1)-(3) together with (21), (23) and (24) or
(22), (23) and (24). If one uses a flexible membrane as a means of covering the free liquid
surface, a velocity potential satisfying the Laplace equation (1) together with the rigid tank wall
boundary conditions (2), (3) and (23) is given by

(38)

Here the rigid bottom of the container is taken at z = -h, while the flexible membrane is located
at z =O. The values AIM are integration constants and w are the coupled frequencies of the
liquid-membrane-system, which have to be determined. The procedure of the solution continues
as in the previous section. With the loading of the membrane by the liquid motion

. f f - (kTrx) (~) laoP(x, y, t) = -lp ttl t:\ wtjAtj cos a cos bel - pgw (39)
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the equation for the amplitude of the membrane yields

647

The solution of this differential equation is of the form of eqn (32) and results with the
compatibility condition (24) in

and

(42)

These eqns (41) and (42) represent rt:J2 homogeneous algebraic equations, of which the
coefficient determinant yields the frequency equation for the coupled frequencies of the
membrane-liquid system. The elimination of the integration constants DIM yields:

m, n, = 1,2,3, .... (43)

of which the coefficient determinant represents the frequency equation for the determination of
the coupled frequencies cu. Truncating this infinite determinant for given m- and n-values to a
finite number of rows and columns results in approximate coupled lower frequencies.

In the case of a coverage by an elastic plate, which is considered to be simply-supported, the
analysis for the determination of the coupled frequencies of the plate-liquid-system is quite
similar as in the membrane case and results in the same set of equations except for the fact,
that IA. has to be substituted by pphp and cu~:') has to be replaced by cu~~).

Numerical evaluation. The coupled frequencies have been numerically evaluated for a rec­
tangular container of the side ratio bla = 0.5 and the parameter pallA. = 1000. The lower coupled
frequencies are presented together with the uncoupled frequencies cu 2/(gJa) as functions of the
tension variable ToIlA.ga in the case of a membrane and as functions of the stiffness parameter
DllA.ga 3 in the case of a plate. Two typical liquid heights have been investigated. The first one
exhibits a rather highly filled container of the liquid height ratio hla =1.0, while the second case
considers a quite low filling ratio hla =0.1. Figures 2 exhibit the frequencies of the flexible
membrane-bottom-liquid system with a free liquid surface. The lower coupled and uncoupled
frequencies are presented for those values of m and n which modes interact with each
other. The uncoupled frequencies of liquid and membrane are for hila = 0.1 (---) and for
hla =1.0 (--) presented. The coupled membrane and liquid frequencies are exhibited for
hla =0.1 (_._) and for hla =1.0 as a full line (-). It may be noticed that for a liquid height
ratio hia =1.0 coupled liquid frequency slightly shifts in magnitude below the value of the
uncoupled frequencies, while the coupled membrane frequencies exhibit a considerable
decrease in comparison with the uncoupled frequencies of the membrane. The effect of
interaction of the flexible membrane bottom with the liquid surface is, of course, much more
pronounced in the case of a low liquid height, as is shown for hla =0.1 in Fig. 2. The coupled
liquid frequencies shift to much higher values and exhibit with decreasina tension an increase
of magnitude, while the coupled membrane frequencies are of much lower magnitude than the
uncoupled membrane frequencies and show with decreasing tension a more rapid decrease in
magnitude. Similar behavior may be observed for a container with a thin elastic plate as its
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10

10'

bottom and a free liquid surface. It is shown in Fig. 3. To investigate the inftuence of varying
liquid height and show the strong interaction of bottom and free liquid surface for the lower
liquid heights, the coupled and uncoupled frequencies have been presented in the Figs 4. In
these figures the uncoupled liquid frequencies presented by the dashed line (---), the un­
coupled frequencies of the membrane by (--) and those of the plate by the dotted lines (...).
The coupled frequencies are shown as dash..<fotted (_._) lines and full lines (-). The
uncoupled liquid frequencies approach, of course, with decreasing liquid height h the frequency
zero, while uncoupled membrane and plate frequencies are constant values. The coupled liquid
frequencies increase with decreasing liquid height, while the coupled membrane- and plate
frequencies are much reduced and decrease for decreasing low liquid heights. The upper two
full lines represent the coupled membrane frequencies which correspond to the dashed (---)
uncoupled frequencies, while the upper (_._) lines are coupled plate frequencies and cor­
respond to the dotted lines (...) for the uncoupled frequencies of the plate.

If a container is completely rigid and its free liquid surface is covered with a ftexible
membrane or an elastic plate the usually low free liquid surface frequencies may be shifted by
this method to much higher values. This may be a desirable effect in space vehicles and space
laboratories in order to shift the natural frequencies away from control frequencies, thus getting
rid of a strong interaction of the liquid and control ~ystem and a low-value jitter, which definitely is
undesirable for experiments to be performed on a space lab. In Figs. S the effect of a membrane
cover on the liquid surface is exhibited besides the uncoupled frequencies of the free liquid
surface and membrane alone. The liquid height ratios hla = 0.1 (...) and hla = 1.0 (---) are
exhibited with the uncoupled membrane frequencies as dotted lines (...), while the coupled
frequencies are presented for hla =0.1 as (_._) and for hla = 1.0 as a full (-) line. It may be
mentioned that always two uncoupled frequencies are shown while for the coupled frequencies
the four lowest ones are presented. For hla =0.1 the coupled frequencies exhibit lower values
as those for hla =1.0 With decreasing membrane tension the coupled frequencies approach
those of the case of the free liquid surface. Similar results are obtained for the covering of the
free liquid surface with a thin elastic plate. They are exhibited in Fig. 6. The strong inftuence on
the coupling of the system by the liquid height is presented in Figs. 7, where the uncoupled
frequencies of the liquid (---), the plate (...), the membrane (---) and the coupled
frequencies of plate-liquid height ratio hla.
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Fig. 4. Inftuence of liquid height upon the coupled liquid frequencies.
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liquid uncoupled, .... plate uncoupled. --- membrane uncoupled; .'.'-'. coupled liquid·plate system,

- coupled liquid-membrane system).

Only for low liquid heights there is a further strong decrease in the other-wise already
reduced magnitude of the coupled frequencies compared with the uncoupled ones.

The numerical results have been obtained by limiting the magnitude of the summation indices
k.l, m and n. If for reasons of comparison the maximum of those values was changed from 8 to
10, the diJference in the results showed in the first and second coupled frequencies in all cases a
change of less than 3%.
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